Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 30(1): 1-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38435853

RESUMO

Chlorophyll b is synthesized from chlorophyllide a, catalyzed by chlorophyllide a oxygenase (CAO). To examine whether reduced chlorophyll b content regulates chlorophyll (Chl) synthesis and photosynthesis, we raised CAO transgenic tobacco plants with antisense CAO expression, which had lower chlorophyll b content and, thus, higher Chl a/b ratio. Further, these plants had (i) lower chlorophyll b and total Chl content, whether they were grown under low or high light; (ii) decreased steady-state levels of chlorophyll biosynthetic intermediates, due, perhaps, to a feedback-controlled reduction in enzyme expressions/activities; (iii) reduced electron transport rates in their intact leaves, and reduced Photosystem (PS) I, PS II and whole chain electron transport activities in their isolated thylakoids; (iv) decreased carbon assimilation in plants grown under low or high light. We suggest that reduced synthesis of chlorophyll b by antisense expression of CAO, acting at the end of Chl biosynthesis pathway, downregulates the chlorophyll b biosynthesis, resulting in decreased Chl b, total chlorophylls and increased Chl a/b. We have previously shown that the controlled up-regulation of chlorophyll b biosynthesis and decreased Chl a/b ratio by over expression of CAO enhance the rates of electron transport and CO2 assimilation in tobacco. Conversely, our data, presented here, demonstrate that-antisense expression of CAO in tobacco, which decreases Chl b biosynthesis and increases Chl a/b ratio, leads to reduced photosynthetic electron transport and carbon assimilation rates, both under low and high light. We conclude that Chl b modulates photosynthesis; its controlled down regulation/ up regulation decreases/ increases light-harvesting, rates of electron transport, and carbon assimilation. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01395-5.

2.
FEBS J ; 282(18): 3543-55, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26102498

RESUMO

UNLABELLED: Although several factors have been suggested to contribute to thermostability, the stabilization strategies used by proteins are still enigmatic. Studies on a recombinant xylanase from Bacilllus sp. NG-27 (RBSX), which has the ubiquitous (ß/α)8 -triosephosphate isomerase barrel fold, showed that just a single mutation, V1L, although not located in any secondary structural element, markedly enhanced the stability from 70 °C to 75 °C without loss of catalytic activity. Conversely, the V1A mutation at the same position decreased the stability of the enzyme from 70 °C to 68 °C. To gain structural insights into how a single extreme N-terminus mutation can markedly influence the thermostability of the enzyme, we determined the crystal structure of RBSX and the two mutants. On the basis of computational analysis of their crystal structures, including residue interaction networks, we established a link between N-terminal to C-terminal contacts and RBSX thermostability. Our study reveals that augmenting N-terminal to C-terminal noncovalent interactions is associated with enhancement of the stability of the enzyme. In addition, we discuss several lines of evidence supporting a connection between N-terminal to C-terminal noncovalent interactions and protein stability in different proteins. We propose that the strategy of mutations at the termini could be exploited with a view to modulate stability without compromising enzymatic activity, or in general, protein function in diverse folds where N and C termini are in close proximity. DATABASE: The coordinates of RBSX, V1A and V1L have been deposited in the PDB database under the accession numbers 4QCE, 4QCF, and 4QDM, respectively.


Assuntos
Proteínas de Bactérias/química , Endo-1,4-beta-Xilanases/química , Triose-Fosfato Isomerase/química , Substituição de Aminoácidos , Bacillus/enzimologia , Bacillus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo
3.
J Proteomics ; 119: 100-11, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25661041

RESUMO

Mammary gland is an exocrine and sebaceous gland made up of branching network of ducts that end in alveoli. Milk is synthesized in the alveoli and secreted into alveolar lumen. Mammary gland represents an ideal system for the study of organogenesis that undergoes successive cycles of pregnancy, lactation and involution. To gain insights on the molecular events that take place in pubertal and lactating mammary gland, we have identified 43 differentially expressed proteins in mammary tissue of heifer (non-lactating representing a virgin mammary gland), and lactating buffaloes (Bubalus bubalis) by 2D-difference gel electrophoresis (2D-DIGE) and mass spectrometry. Twenty one proteins were upregulated during lactation whereas 8 proteins were upregulated in heifer mammary gland significantly (p<0.05). Bioinformatics analyses of the identified proteins showed that a majority of the proteins are involved in metabolic processes. The differentially expressed proteins were validated by real-time PCR and Western blotting. We observed differential expressions of certain new proteins including EEF1D, HSPA5, HSPD1 and PRDX6 during lactation which have not been reported before. The differentially expressed proteins were mapped to available biological pathways and networks involved in lactation. This study signifies the importance of some proteins which are preferentially expressed during lactation and in heifer mammary gland. BIOLOGICAL SIGNIFICANCE: This work is important because we have generated information in water buffalo (B. bubalis) for the first time which is the major milk producing animal in Indian Subcontinent. Out of a present production of 133milliontons of milk produced in India, contribution of buffalo milk is around 54%. Its physiology is somewhat different from the lactating cows. Buffalo milk composition varies from cow milk in terms of higher fat and total solid content, which confers an advantage in preparation of specialized cheese, curd and other dairy products. Being a major milk producing animal in India it is highly essential to understand the lactation associated proteins in the mammary gland of buffalo. In the present investigation our attempt has been to identify new protein evidences which are expressed in lactating buffalo mammary gland and have not been reported before. The findings reported in the present study will help in understanding the lactation biology of buffalo mammary gland in particular and the mammary gland biology in general.


Assuntos
Búfalos/metabolismo , Regulação da Expressão Gênica/fisiologia , Lactação/fisiologia , Glândulas Mamárias Animais/metabolismo , Gravidez/metabolismo , Proteoma/metabolismo , Animais , Feminino
4.
Proteomics ; 13(21): 3189-204, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24030930

RESUMO

Mammary gland is made up of a branching network of ducts that end in alveoli. Terminally differentiated mammary epithelial cells (MECs) constitute the innermost layer of aveoli. They are milk-secreting cuboidal cells that secrete milk proteins during lactation. Little is known about the expression profile of proteins in the metabolically active MECs during lactation or their functional role in the lactation process. In the present investigation, we have reported the proteome map of MECs in lactating cows using 2DE MALDI-TOF/TOF MS and 1D-Gel-LC-MS/MS. MECs were isolated from milk using immunomagnetic beads and confirmed by RT-PCR and Western blotting. The 1D-Gel-LC-MS/MS and 2DE-MS/MS based approaches led to identification of 431 and 134 proteins, respectively, with a total of 497 unique proteins. Proteins identified in this study were clustered into functional groups using bioinformatics tools. Pathway analysis of the identified proteins revealed 28 pathways (p < 0.05) providing evidence for involvement of various proteins in lactation function. This study further provides experimental evidence for the presence of many proteins that have been predicted in annotated bovine genome. The data generated further provide a set of bovine MEC-specific proteins that will help the researchers to understand the molecular events taking place during lactation.


Assuntos
Células Epiteliais/química , Glândulas Mamárias Animais/citologia , Leite/citologia , Proteoma/análise , Animais , Bovinos , Feminino , Lactação/metabolismo , Glândulas Mamárias Animais/metabolismo , Redes e Vias Metabólicas , Mapas de Interação de Proteínas , Proteínas/análise , Proteínas/química , Proteínas/metabolismo , Proteoma/química
5.
Proc Natl Acad Sci U S A ; 110(14): 5392-7, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23471987

RESUMO

Malaria parasites use hemoglobin (Hb) as a major nutrient source in the intraerythrocytic stage, during which heme is converted to hemozoin (Hz). The formation of Hz is essential for parasite survival, but to date, the underlying mechanisms of Hb degradation and Hz formation are poorly understood. We report the presence of a ∼200-kDa protein complex in the food vacuole that is required for Hb degradation and Hz formation. This complex contains several parasite proteins, including falcipain 2/2', plasmepsin II, plasmepsin IV, histo aspartic protease, and heme detoxification protein. The association of these proteins is evident from coimmunoprecipitation followed by mass spectrometry, coelution from a gel filtration column, cosedimentation on a glycerol gradient, and in vitro protein interaction analyses. To functionally characterize this complex, we developed an in vitro assay using two of the proteins present in the complex. Our results show that falcipain 2 and heme detoxification protein associate with each other to efficiently convert Hb to Hz. We also used this in vitro assay to elucidate the modes of action of chloroquine and artemisinin. Our results reveal that both chloroquine and artemisinin act during the heme polymerization step, and chloroquine also acts at the Hb degradation step. These results may have important implications in the development of previously undefined antimalarials.


Assuntos
Antimaláricos/farmacologia , Cisteína Endopeptidases/metabolismo , Hemeproteínas/biossíntese , Hemoglobinas/metabolismo , Complexos Multiproteicos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Artemisininas , Cloroquina , Cromatografia em Gel , Imunoprecipitação , Espectrometria de Massas , Polimerização/efeitos dos fármacos , Proteólise/efeitos dos fármacos
6.
Plant Physiol ; 159(1): 433-49, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22419827

RESUMO

Chlorophyll b is synthesized by the oxidation of a methyl group on the B ring of a tetrapyrrole molecule to a formyl group by chlorophyllide a oxygenase (CAO). The full-length CAO from Arabidopsis (Arabidopsis thaliana) was overexpressed in tobacco (Nicotiana tabacum) that grows well at light intensities much higher than those tolerated by Arabidopsis. This resulted in an increased synthesis of glutamate semialdehyde, 5-aminolevulinic acid, magnesium-porphyrins, and chlorophylls. Overexpression of CAO resulted in increased chlorophyll b synthesis and a decreased chlorophyll a/b ratio in low light-grown as well as high light-grown tobacco plants; this effect, however, was more pronounced in high light. The increased potential of the protochlorophyllide oxidoreductase activity and chlorophyll biosynthesis compensated for the usual loss of chlorophylls in high light. Increased chlorophyll b synthesis in CAO-overexpressed plants was accompanied not only by an increased abundance of light-harvesting chlorophyll proteins but also of other proteins of the electron transport chain, which led to an increase in the capture of light as well as enhanced (40%-80%) electron transport rates of photosystems I and II at both limiting and saturating light intensities. Although the quantum yield of carbon dioxide fixation remained unchanged, the light-saturated photosynthetic carbon assimilation, starch content, and dry matter accumulation increased in CAO-overexpressed plants grown in both low- and high-light regimes. These results demonstrate that controlled up-regulation of chlorophyll b biosynthesis comodulates the expression of several thylakoid membrane proteins that increase both the antenna size and the electron transport rates and enhance carbon dioxide assimilation, starch content, and dry matter accumulation.


Assuntos
Clorofila/biossíntese , Luz , Nicotiana/enzimologia , Oxigenases/metabolismo , Fotossíntese , Ácido Aminolevulínico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Transporte de Elétrons , Ativação Enzimática , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Oxigenases/genética , Fenótipo , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/efeitos da radiação , Amido/metabolismo , Proteínas das Membranas dos Tilacoides/genética , Proteínas das Membranas dos Tilacoides/metabolismo , Nicotiana/genética , Nicotiana/efeitos da radiação , Transgenes
7.
Proteome Sci ; 9: 5, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21294899

RESUMO

BACKGROUND: Hepatitis E is endemic to resource-poor regions, where it manifests as sporadic cases and large waterborne outbreaks. The disease severity ranges from acute self-limited hepatitis with low mortality to fulminant hepatic failure with high mortality. It is believed that the host response plays an important role in determining the progression and outcome of this disease. We profiled the plasma peptidome from hepatitis E patients to discover suitable biomarkers and understand disease pathogenesis. RESULTS: The peptidome (< 10 kDa) fraction of plasma was enriched and analyzed by mass spectrometry. A comparative analysis of the peptide pattern of hepatitis E patients versus healthy controls was performed using ClinPro Tools. We generated a peptide profile that could be used for selective identification of hepatitis E cases. We have identified five potential biomarker peaks with m/z values of 9288.6, 7763.6, 4961.5, 1060.572 and 2365.139 that can be used to reliably differentiate between hepatitis E patients and controls with areas under the receiver operating characteristic curve (AUROC) values of 1.00, 0.954, 0.989, 0.960 and 0.829 respectively. A number of proteins involved in innate immunity were identified to be differentially present in the plasma of patients compared to healthy controls. CONCLUSIONS: Besides the utility of this approach for biomarker discovery, identification of changes in endogenous peptides in hepatitis E patient plasma has increased our understanding of disease pathogenesis. We have identified peptides in plasma that can reliably distinguish hepatitis E patients from healthy controls. Results from this and an earlier proteomics study are discussed.

8.
J Proteome Res ; 10(2): 680-91, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21175202

RESUMO

Plasmodium merozoite surface protein-1 (MSP-1) is an essential antigen for the merozoite invasion of erythrocytes. A key challenge to the development of an effective malaria vaccine that can block the erythrocyte invasion is to establish the molecular interaction(s) among the parasite surface proteins as well as with the host cell encoded receptors. In the present study, we applied molecular interactions and proteome approaches to identify PfMSP-1 associated complex on the merozoite surface. Proteomic analysis identified a major malaria surface protein, PfRhopH3 interacting with PfMSP-1(42). Pull-down experiments with merozoite lysate using anti-PfMSP-1 or anti-PfRhopH3 antibodies showed 16 bands that when identified by tandem mass spectrometry corresponded to11 parasite proteins: PfMSP-3, PfMSP-6, PfMSP-7, PfMSP-9, PfRhopH3, PfRhopH1, PfRAP-1, PfRAP-2, and two RAP domain containing proteins. This MSP-1 associated complex was specifically seen at schizont/merozoite stages but not the next ring stage. We could also identify many of these proteins in culture supernatant, suggesting the shedding of the complex. Interestingly, the PfRhopH3 protein also showed binding to the human erythrocyte and anti-PfRhopH3 antibodies blocked the erythrocyte invasion of the merozoites. These results have potential implications in the development of PfMSP-1 based blood stage malaria vaccine.


Assuntos
Proteína 1 de Superfície de Merozoito/química , Complexos Multiproteicos/química , Plasmodium falciparum/química , Proteínas de Protozoários/química , Animais , Células COS , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Humanos , Immunoblotting , Imunoprecipitação , Proteína 1 de Superfície de Merozoito/metabolismo , Merozoítos/química , Merozoítos/metabolismo , Complexos Multiproteicos/metabolismo , Plasmodium falciparum/metabolismo , Mapeamento de Interação de Proteínas , Proteômica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
PLoS One ; 5(6): e11347, 2010 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-20596542

RESUMO

BACKGROUND: Stabilization strategies adopted by proteins under extreme conditions are very complex and involve various kinds of interactions. Recent studies have shown that a large proportion of proteins have their N- and C-terminal elements in close contact and suggested they play a role in protein folding and stability. However, the biological significance of this contact remains elusive. METHODOLOGY: In the present study, we investigate the role of N- and C-terminal residue interaction using a family 10 xylanase (BSX) with a TIM-barrel structure that shows stability under high temperature, alkali pH, and protease and SDS treatment. Based on crystal structure, an aromatic cluster was identified that involves Phe4, Trp6 and Tyr343 holding the N- and C-terminus together; this is a unique and important feature of this protein that might be crucial for folding and stability under poly-extreme conditions. CONCLUSION: A series of mutants was created to disrupt this aromatic cluster formation and study the loss of stability and function under given conditions. While the deletions of Phe4 resulted in loss of stability, removal of Trp6 and Tyr343 affected in vivo folding and activity. Alanine substitution with Phe4, Trp6 and Tyr343 drastically decreased stability under all parameters studied. Importantly, substitution of Phe4 with Trp increased stability in SDS treatment. Mass spectrometry results of limited proteolysis further demonstrated that the Arg344 residue is highly susceptible to trypsin digestion in sensitive mutants such as DeltaF4, W6A and Y343A, suggesting again that disruption of the Phe4-Trp6-Tyr343 (F-W-Y) cluster destabilizes the N- and C-terminal interaction. Our results underscore the importance of N- and C-terminal contact through aromatic interactions in protein folding and stability under extreme conditions, and these results may be useful to improve the stability of other proteins under suboptimal conditions.


Assuntos
Carbono/química , Nitrogênio/química , Xilosidases/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Hidrólise , Modelos Moleculares , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Xilosidases/química , Xilosidases/genética
10.
PLoS One ; 3(8): e3063, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18725971

RESUMO

BACKGROUND: Understanding the mechanisms that govern protein stability under poly-extreme conditions continues to be a major challenge. Xylanase (BSX) from Bacillus sp. NG-27, which has a TIM-barrel structure, shows optimum activity at high temperature and alkaline pH, and is resistant to denaturation by SDS and degradation by proteinase K. A comparative circular dichroism analysis was performed on native BSX and a recombinant BSX (R-BSX) with just one additional methionine resulting from the start codon. The results of this analysis revealed the role of the partially exposed N-terminus in the unfolding of BSX in response to an increase in temperature. METHODOLOGY: We investigated the poly-extremophilicity of BSX to deduce the structural features responsible for its stability under one set of conditions, in order to gain information about its stability in other extreme conditions. To systematically address the role of the partially exposed N-terminus in BSX stability, a series of mutants was generated in which the first hydrophobic residue, valine (Val1), was either deleted or substituted with various amino acids. Each mutant was subsequently analyzed for its thermal, SDS and proteinase K stability in comparison to native BSX. CONCLUSIONS: A single conversion of Val1 to glycine (Gly) changed R-BSX from being thermo- and alkali- stable and proteinase K and SDS resistant, to being thermolabile and proteinase K-, alkali- and SDS- sensitive. This result provided insight into the structure-function relationships of BSX under poly-extreme conditions. Molecular, biochemical and structural data revealed that the poly-extremophilicity of BSX is governed by a partially exposed N-terminus through hydrophobic interactions. Such hitherto unidentified N-terminal hydrophobic interactions may play a similar role in other proteins, especially those with TIM-barrel structures. The results of the present study are therefore of major significance for protein folding and protein engineering.


Assuntos
Valina , Xilano Endo-1,3-beta-Xilosidase/química , Xilano Endo-1,3-beta-Xilosidase/metabolismo , Sequência de Aminoácidos , Bacillus , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dicroísmo Circular , Endopeptidase K/metabolismo , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
11.
Biochem Biophys Res Commun ; 326(2): 466-71, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15582600

RESUMO

Chlorophyllide a oxygenase (CAO) that converts chlorophyllide a to chlorophyllide b was overexpressed in tobacco to increase chlorophyll (Chl) b biosynthesis and alter the Chl a/b ratio. Transgenic plants along with their wild-type cultivars were grown in low and high light intensities. In low light there was 20% increase in chlorophyll b contents in transgenic plants, which resulted in 16% reduction in the Chl a/b ratio. In high light, total Chl contents were 31% higher in transgenic plants than those of wild type. The increase in Chl a was 19% and that of Chl b was 72% leading to 31% decline of Chl a/b ratio. The increase in Chl b contents was accompanied by enhanced CAO expression that was highly pronounced in low light. As compared to low light, in high light Lhcb1 and Chl a/b transcripts abundance was significantly increased in transgenic plants suggesting a close relationship between Chl b synthesis and cab gene expression. However, there was a small increase in expression of LHCII proteins, which did not correspond to 72% increase in Chl b content in transgenic line, implying that LHCPII has the ability to bind more Chl b molecules.


Assuntos
Clorofila/biossíntese , Luz , Nicotiana/genética , Nicotiana/metabolismo , Oxigenases/metabolismo , Arabidopsis/genética , Northern Blotting , Western Blotting , Clorofila A , Expressão Gênica , Vetores Genéticos/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Oxigenases/genética , Reação em Cadeia da Polimerase , RNA de Plantas/genética , RNA de Plantas/metabolismo , Nicotiana/enzimologia , Nicotiana/efeitos da radiação , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...